R(10.5)=-10p^2+130p

Simple and best practice solution for R(10.5)=-10p^2+130p equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for R(10.5)=-10p^2+130p equation:



(10.5)=-10R^2+130R
We move all terms to the left:
(10.5)-(-10R^2+130R)=0
We add all the numbers together, and all the variables
-(-10R^2+130R)+10.5=0
We get rid of parentheses
10R^2-130R+10.5=0
a = 10; b = -130; c = +10.5;
Δ = b2-4ac
Δ = -1302-4·10·10.5
Δ = 16480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$R_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$R_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{16480}=\sqrt{16*1030}=\sqrt{16}*\sqrt{1030}=4\sqrt{1030}$
$R_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-130)-4\sqrt{1030}}{2*10}=\frac{130-4\sqrt{1030}}{20} $
$R_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-130)+4\sqrt{1030}}{2*10}=\frac{130+4\sqrt{1030}}{20} $

See similar equations:

| 9(t-84)=63 | | 8+11x-6=10+3x | | v/5+79=86 | | b/5+78=85 | | h=-16^2+173+66 | | 51=5p-49 | | 15=f/4+14 | | X^3-4x^2-7=0 | | 11=5(x)+36 | | t/2+13=16 | | 3w+30=6(w+4) | | (5t+3)2−33=−3(5t+3)2-33=-3 | | 4x^2+16x+12x=48 | | 3w+30=6(w=4) | | 19-3w=1 | | 0=0.825x+0.175x | | (8x-6)°(9x-25)°=180 | | 3(y+1)=2y-32 | | 3(y+1)=-2y-32 | | −1/4a−4=7/4a−3 | | 7x+2/14x-3=x-8/2x+3 | | -6x-7=6x+89 | | 2×(2x-1)=7×(x+1) | | 3(y+1)=-2-32 | | r+204/29=19 | | 50+4z+3(43.33+-1.33)=180 | | -9x+36=9(x-4) | | -9-3x=2x-34 | | 1/(27^(1-5x))=81^(3x-11) | | 3x+5×(1+2x)=5x-11 | | (2−4d)(2+4d)=0. | | x+(x-21)=180 |

Equations solver categories